Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22027, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034618

RESUMO

Eliminating synthetic dyes and organic contaminants from water is crucial for safeguarding human health and preserving the environment. In this study, we explored the effectiveness of Ag-Cu-CeO2 nanocomposites as adsorbents to remove Congo Red dye from water. Three compositions of Ag-Cu-CeO2 nanocomposites (10:20:70, 15:15:70, and 20:10:70) have been synthesized by the aqueous coprecipitation method. A comprehensive analysis was performed by different techniques including X-ray diffraction, Fourier transform infrared spectroscopy, BET surface area determination, Thermogravimetric analysis, Scanning electron microscopy, and TEM. The synthesized nanocomposites have a dimension of 5 ± 1 nm and a high surface area (51.832-78.361 m2g-1). Among these, the nanocomposite with composition 15:15:70 showed the highest adsorption capacity of 4.71 mg/g adsorption (96.83 % removal) from the 0.8 × 10-4 M (55.6 mg/l) Congo Red solution at pH values of 2 at 20 °C with contact time of 3h. The adsorption data is best fitted in the Freundlich adsorption isotherm and pseudo-second-order kinetic model. The negative values of enthalpy variation (-27.57, -26.43, and -16.73 kJ/mol) demonstrated that the adsorption was spontaneous and exothermic. The cycling run showed a mere 12 % deactivation after five cycles of use thus indicating that Ag-Cu-CeO2 nanocomposites hold great potential as effective and eco-friendly adsorbents to remove Congo Red from water.

2.
Small ; 19(25): e2208074, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932896

RESUMO

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35838141

RESUMO

The large-scale deployment of proton-exchange membrane water electrolyzers for high-throughput sustainable hydrogen production requires transition from precious noble metal anode electrocatalysts to low-cost earth-abundant materials. However, such materials are commonly insufficiently stable and/or catalytically inactive at low pH, and positive potentials required to maintain high rates of the anodic oxygen evolution reaction (OER). To address this, we explore the effects of a dielectric nanoscale-thin layer, constituted of amorphous TiO2, on the stability and electrocatalytic activity of nanostructured OER anodes based on low-cost Co3O4. We demonstrate a direct correlation between the OER performance and the thickness of the atomic layer deposited TiO2 layers. An optimal TiO2 layer thickness of 4.4 nm enhances the anode lifetime by a factor of ca. 3, achieving 80 h of continuous electrolysis at pH near zero, while preserving high OER catalytic activity of the bare Co3O4 surface. Thinner and thicker TiO2 layers decrease the stability and activity, respectively. This is attributed to the pitting of the TiO2 layer at the optimal thickness, which allows for access to the catalytically active Co3O4 surface while stabilizing it against corrosion. These insights provide directions for the engineering of active and stable composite earth-abundant materials for acidic water splitting for high-throughput hydrogen production.

4.
Nature ; 609(7928): 722-727, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868345

RESUMO

In addition to its use in the fertilizer and chemical industries1, ammonia is currently seen as a potential replacement for carbon-based fuels and as a carrier for worldwide transportation of renewable energy2. Implementation of this vision requires transformation of the existing fossil-fuel-based technology for NH3 production3 to a simpler, scale-flexible technology, such as the electrochemical lithium-mediated nitrogen-reduction reaction3,4. This provides a genuine pathway from N2 to ammonia, but it is currently hampered by limited yield rates and low efficiencies4-12. Here we investigate the role of the electrolyte in this reaction and present a high-efficiency, robust process that is enabled by compact ionic layering in the electrode-electrolyte interface region. The interface is generated by a high-concentration imide-based lithium-salt electrolyte, providing stabilized ammonia yield rates of 150 ± 20 nmol s-1 cm-2 and a current-to-ammonia efficiency that is close to 100%. The ionic assembly formed at the electrode surface suppresses the electrolyte decomposition and supports stable N2 reduction. Our study highlights the interrelation between the performance of the lithium-mediated nitrogen-reduction reaction and the physicochemical properties of the electrode-electrolyte interface. We anticipate that these findings will guide the development of a robust, high-performance process for sustainable ammonia production.

5.
Angew Chem Int Ed Engl ; 60(29): 15821-15826, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33884730

RESUMO

The instability and expense of anodes for water electrolyzers with acidic electrolytes can be overcome through the implementation of a cobalt-iron-lead oxide electrocatalyst, [Co-Fe-Pb]Ox , that is self-healing in the presence of dissolved metal precursors. However, the latter requirement is pernicious for the membrane and especially the cathode half-reaction since Pb2+ and Fe3+ precursors poison the state-of-the-art platinum H2 evolving catalyst. To address this, we demonstrate the invariably stable operation of [Co-Fe-Pb]Ox in acidic solutions through a cobalt-selective self-healing mechanism without the addition of Pb2+ and Fe3+ and investigate the kinetics of the process. Soft X-ray absorption spectroscopy reveals that low concentrations of Co2+ in the solution stabilize the catalytically active Co(Fe) sites. The highly promising performance of this system is showcased by steady water electrooxidation at 80±1 °C and 10 mA cm-2 , using a flat electrode, at an overpotential of 0.56±0.01 V on a one-week timescale.

6.
Adv Mater ; 32(18): e1904804, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31762106

RESUMO

It has become apparent that renewable energy sources are plentiful in many, often remote, parts of the world, such that storing and transporting that energy has become the key challenge. For long-distance transportation by pipeline and bulk tanker, a liquid form of energy carrier is ideal, focusing attention on liquid hydrogen and ammonia. Development of high-activity and selectivity electrocatalyst materials to produce these energy carriers by reductive electrochemistry has therefore become an important area of research. Here, recent developments and challenges in the field of electrocatalytic materials for these processes are discussed, including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the nitrogen reduction reaction (NRR). Some of the mis-steps currently plaguing the nitrogen reduction to ammonia field are highlighted. The rapidly growing roles that in situ/operando and quantum chemical studies can play in new electromaterials discovery are also surveyed.

7.
Chempluschem ; 83(7): 704-710, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31950620

RESUMO

The possibility of efficient water electrooxidation sustained by continuous (re)generation of catalysts derived from the oxidative electrodeposition of transition-metal contaminants is examined herein for three natural water samples from Australia and China. The metal composition of the solutions has been determined by inductively coupled plasma optical emission spectrometry, and a range of strategies to produce water-splitting catalysts by means of in situ electrodeposition have been applied. The performance of the resulting electrocatalysts is below the state-of-the-art level owing to large amounts of impurities in the solutions and non-optimal concentrations of naturally available catalyst precursors. Nevertheless, these studies have identified the FePb-based system as a rare example of an electrocatalyst for water oxidation that forms in situ and maintains reasonable activity (≥4.5 mA cm-2 at an overpotential of 0.8 V) in weakly acidic solutions (pH 2.9).

8.
Dalton Trans ; 45(31): 12384-92, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27424735

RESUMO

A near infrared (NIR) responsive photocatalyst, composed of a narrow band gap semiconductor (i.e. MoS2) and an optical material possessing upconverting ability (i.e. NaYF4:Yb(3+)/Er(3+)) has been successfully prepared via a simple hydrothermal method. The latter has the ability to convert NIR light into visible light while the MoS2 uses the light to degrade organic pollutants. Upon near infrared (NIR) excitation of the MoS2-NaYF4:Yb(3+)/Er(3+) nanocomposites, the energy of the strong green and the red emissions along with the weak violet emissions from the NaYF4:Yb(3+)/Er(3+) nanocrystals (NCs) is transferred to MoS2. This results in enhanced NIR light triggered photocatalytic performance, as verified by studying the degradation of Rhodamine B (RhB) dye under 980 nm laser excitation. The strong photocatalytic activity of MoS2-NaYF4:Yb(3+)/Er(3+) composites is attributed to the layered nature of the photocatalyst which leads to the efficient separation of photogenerated carriers (electron-hole pairs) and excellent upconversion properties of NaYF4:Yb(3+)/Er(3+) NCs. The study also shows the importance of the composite formation, as the physical mixture leads to only very low photocatalytic activity. Our results can be helpful in the structural design and development of high-performance photocatalysts.

9.
Langmuir ; 32(1): 247-53, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26689897

RESUMO

In this Article, we report the synthesis of Ln(3+) (Yb(3+), Tm(3+))-doped BiPO4/BiVO4 nanocomposite photocatalyst that shows efficient photocatalytic activity under UV-visible-near-infrared (UV-vis-NIR) illumination. Incorporation of upconverting Ln(3+) ion pairs in BiPO4 nanocrystals resulted in strong emission in the visible region upon excitation with a NIR laser (980 nm). A composite of BiPO4 nanocrystals and vanadate was prepared by the addition of vanadate source to BiPO4 nanocrystals. In the nanocomposite, the strong blue emission from Tm(3+) ions via upconversion is nonradiatively transferred to BiVO4, resulting in the production of excitons. This in turn generates reactive oxygen species and efficiently degrades methylene blue dye in aqueous medium. The nanocomposite also shows high photocatalytic activity both under the visible region (0.010 min(-1)) and under the full solar spectrum (0.047 min(-1)). The results suggest that the photocatalytic activity of the nanocomposite under both NIR as well as full solar irradiation is better compared to other reported nanocomposite photocatalysts. The choice of BiPO4 as the matrix for Ln(3+) ions has been discussed in detail, as it plays an important role in the superior NIR photocatalytic activity of the nanocomposite photocatalyst.

10.
ACS Appl Mater Interfaces ; 7(46): 25702-8, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26529286

RESUMO

We report a green synthetic approach to the synthesis of water dispersible Ce(3+)/Tb(3+)-doped SrF2 nanocrystals, carried out using environment friendly microwave irradiation with water as solvent. The nanocrystals display strong green emission due to energy transfer from Ce(3+) to Tb(3+) ions. This strong green emission from Tb(3+) ions is selectively quenched upon addition of Cu(2+) ions, thus making the nanocrystals a potential Cu(2+) ions sensing material. There is barely any interference by other metal ions on the detection of Cu(2+) ions and the detection limit is as low as 2 nM. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA) with the recovery of almost 90% of the original luminescence. The luminescence quenching and recovery cycle was repeated multiple times without much effect on the sensitivity. The study was extended to real world water samples and obtained similar results. In addition to the sensing, we strongly predict the small size and high luminescence of the Ce(3+)/Tb(3+)-doped SrF2 nanocrystals can be used for bioimaging applications.


Assuntos
Cério/química , Cobre/análise , Corantes Fluorescentes/química , Fluoretos/química , Nanopartículas/química , Estrôncio/química , Térbio/química , Transferência de Energia , Íons , Luminescência , Nanopartículas/ultraestrutura , Pós , Soluções , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Difração de Raios X
11.
Chem Commun (Camb) ; 50(52): 6890-3, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24838175

RESUMO

Dopamine functionalized carbon nanoparticles (CNPs) that can act as efficient photoinduced electron donor-acceptor systems depending on the pH of the medium have been synthesized. In acidic media, dopamine on CNPs exists as hydroquinone and serves as an electron donor while under alkaline conditions the corresponding quinone form of dopamine serves as a strong electron acceptor. Application of external NADH to the system can invert the donor-acceptor roles under alkaline conditions.


Assuntos
Benzoquinonas/química , Carbono/química , Dopamina/química , Hidroquinonas/química , Luz , Nanopartículas/química , Transporte de Elétrons , Elétrons , Concentração de Íons de Hidrogênio , Modelos Moleculares , NAD/química
12.
Chemistry ; 20(12): 3311-6, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24677546

RESUMO

This article describes a green synthetic approach to prepare water dispersible perovskite-type Eu3+-doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 8C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90% of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+-doped KZnF3 nanoparticles could be used as a tool for bioimaging.


Assuntos
Cobre/química , Európio/química , Fluoretos/química , Íons/química , Nanopartículas/química , Nanoestruturas/química , Compostos de Zinco/química , Cobre/análise , Cristalização , Íons/análise , Luminescência , Medições Luminescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...